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Inducible defences in response to predation risk are a well-known example of adaptive phenotypic plasticity. Although inducible
defences have been studied mainly within a generation (within-generational plasticity), there is now clear evidence that ancestral
exposure to predation risk can influence the defences expressed by offspring, even if they have not been exposed themselves
(transgenerational plasticity). The molecular mechanisms allowing the transmission of environmental information across generations
are not well understood. In this study, we combined measures of antipredator responses (behavioural and morphological) with
transcriptomic investigations across two generations in the freshwater snail Physa acuta. We hypothesised that both within- and
transgenerational plasticity would induce phenotypic changes associated with differential gene expression. Our results confirmed
within- and transgenerational plasticity: F1 snails respond to predator-cue exposure by increasing escape behaviour, reducing shell
length, and developing thicker and slenderer shells, whereas F2 snails from exposed parents have longer and thicker shells with
narrower apertures. Within- and transgenerational plasticity were accompanied by the differential expression of 112 genes (101 up- and
11 downregulated) and 23 differentially expressed genes (17 up- and 6 downregulated), respectively. Within- and transgenerational
plasticity did not share common differentially expressed genes, but the associated molecular functions, involving metabolism and
transcription regulation, were similar. These results suggest that predator-induced within-generational plasticity and transgenerational

plasticity may result from different genomic pathways and may evolve independently.

Heredity (2025) 134:439-449; https://doi.org/10.1038/s41437-025-00775-9

INTRODUCTION

Phenotypic plasticity is the ability of a genotype to produce
alternative phenotypes under different environmental conditions
(Pigliucci 2005). Plastic responses are widespread across the
phylogenetic spectrum (e.g. Galloway and Etterson 2007; Luquet
et al. 2011; Segers and Taborsky 2011; Walsh et al. 2016) and are a
major concern in evolutionary biology as they can be adaptive, i.e.,
increasing the fitness of organisms facing environmental changes
(Pigliucci 2005). Phenotypic plasticity classically refers to within-
generational plasticity (WGP), meaning that it occurs within one
generation. Recently, plasticity has also been found to occur
across generations (transgenerational plasticity [TGP]), where the
phenotype of an organism is influenced by the environment
experienced by previous generations (Bell and Hellmann 2019).
Interest in TGP has grown rapidly in recent years with evidence
that TGP is at least as widespread as WGP (Jablonka and Raz 2009;
Tariel et al. 2020b). Although there are numerous examples of TGP
generating seemingly adaptive offspring phenotypes, its adaptive
role is expected to be more challenging than that of WGP because
of patterns of environmental variation across generations
(Colicchio and Herman 2020). Indeed, the selection of a strong
temporal autocorrelation between environments of distinct
generations (Ezard et al. 2014; Kuijper and Hoyle 2015; Prizak

et al. 2014) and a transmission system that allows the induction of
adaptive phenotypes across generations is required (Fallet et al.
2020). The inheritance mechanisms appear diverse, ranging from
epigenetic changes to parental transmission of cytoplasmic
elements (small RNAs, nutrients, hormones, proteins), parental
care and cultural transmission (Bell and Hellmann 2019; Danchin
et al. 2011).

Regardless of the transmission mechanism, the influence of the
parental environment on the offspring phenotype should be
linked to changes in gene expression, at least in some specific
tissues and developmental stages. Surprisingly, the transgenera-
tional plastic response at the molecular level has been overlooked.
This is indeed a necessary first step to unravel the molecular
mechanisms of plasticity in general and their transgenerational
inheritance. The most compelling explorations of changes in gene
expression profiles in response to both developmental (WGP) and
parental (TGP) environments have been conducted by Hales et al.
(2017) on Daphnia ambigua and (Stein et al. (2018) on the three-
spined stickleback (Gasterosteus aculeatus). These studies com-
pared gene expression between individuals that had been
exposed to predator cues relative to nonexposed individuals
within a generation (WGP genes) and among their offspring (from
non-exposed and exposed parents; TGP genes). Stein et al. (2018)
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reported that the expression of the same group of genes changed
their expression in offspring regardless of wether predation risk
was experienced by the offspring (TGP), the father (WGP), or both.
This suggests that a core set of genes is consistently affected by
predation risk regardless of who experiences it. Conversely, Hales
et al. (2017) reported that changes in the expression of genes that
respond to TGP differed depending on whether exposure to
predation was experienced by parents or grandparents. They also
revealed that very few genes were common to both WGP and
TGP. Notably, Clark et al. (2019) also reported that the TGP gene
expression profiles of larvae of sea urchins (Psammechinus miliaris)
spawned at low pH from preacclimated adults differed from those
of larvae produced by adults exposed to ambient pH, but the
authors did not explore the WGP genes. These few results
highlight the necessity of investigating WGP and TGP together at
the molecular level. In addition to the inheritance mechanisms
allowing organisms to retain information about past environ-
mental conditions to adjust their future phenotype, we need to
know whether the two forms of plasticity are distinct at the
molecular level and potentially free to evolve independently of
one another (Bell and Stein 2017).

Predation risk is a major selection pressure for most species and
results in the evolution of defences in prey (Kikuchi et al. 2023). As
predation risk often varies over time and space, it favours the
evolution of phenotypic plasticity in defences (Reger et al. 2018;
Tariel et al. 2020b; Viney and Diaz 2012). Indeed, although some
defences against predators are constitutive, plastic defences are
only induced when prey detect some predator cues in their
environment (e.g. visual cues, chemical cues such as predator
odours, or alarm signals released by conspecifics). These induced
defences are classic examples of adaptive WGP: prey can increase
their fitness by producing defences only when predators are
present. The links between prey-predator interactions and WGP
have long been studied (e.g. Tariel et al. 2020b; Tollrian 1995).
Plastic defences can also be induced in offspring after their
parents or more distant ancestors have detected predator cues.
This transgenerational induction of defences was first highlighted
in Daphnia morphology by Agrawal et al. (1999) and has since
been repeatedly shown in multiple species and defences (review
in MacLeod et al. 2022; Tariel et al. 2020b).

Consequently, this work aims to elucidate the molecular
mechanisms underlying the expression of WGP and TGP in defences
in the context of predator-prey interactions. We used Physa acuta
(also referred to as Physella acuta), a freshwater snail known for its
within- and transgenerational antipredator defences, such as escape
behaviour e.g. snails crawl out of the water when they or their
parents detect predator cues (Luquet and Tariel 2016; Tariel et al.
2020; Tariel, Plénet, et al. 2020a; Turner et al. 1999), changes in shell
size and shape, increases in shell thickness and overall increases in
shell-crush resistance (e.g. shell are harder to handle or to crush by
predators (Auld and Relyea 2011; Beaty et al. 2016; DeWitt 1998;
Tariel, Plénet, et al. 2020c; Tariel-Adam et al. 2023). We combined a
two-generation experiment to generate predator-induced WGP and
then TGP of defences (only in a nonexposed environment) with a
transcriptomic investigation. We used transcriptome sequencing
and assembly to investigate transcriptome mantle skirt gene
expression specifically (the mantle skirt is the tissue that synthesises
the shell). We expected that gene expression would be affected by
current (WGP) and parental (TGP) exposure to predator cues. More
specifically, as WGP and TGP induce similar phenotypic responses
(e.g. increases in shell thickness), we expected the two processes to
share the same core set of genes.

MATERIALS AND METHODS

Animal collection, rearing conditions and experimental design
Adult P. acuta snails were collected from a wild population in the lentic
backwater of the Rhone River (Lyon, France, 45° 48'6''N, 4° 55/33"E) in
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September 2018. Individuals from this population have been repeatedly
used in previous studies on predator-induced plasticity (Luquet and Tariel
2016) and are naturally exposed to predation by the crayfish Faxonius
limosus. The experiment was conducted in our laboratory in a temperature-
controlled chamber at 25 °C with a photoperiod of 12/12 h. The wild snails
constituting the FO generation were pooled in a 10 L plastic box filled with
dechlorinated tap water (control water hereafter) and interbred overnight.
They were then isolated in 80 mL plastic boxes (4.5 x 6 cm) filled with tap
control (i.e., without predator cues) water to lay eggs for 3 days. Eggs
within boxes constitute F1 matrilines. Eggs hatched seven days later, and
siblings subsequently grew together for an additional 10 days in water
without predator cues. Then, 10 siblings of 20 F1 matrilines were randomly
selected and split into two developmental environments: five siblings in
water without predator cues (nonexposure treatment) and five siblings in
water with predator cues (exposure treatment). F1 siblings individually
developed for the next 31 days in 80 mL plastic boxes. On this date, one
F1 snail per matriline and treatment was frozen at —80 °C for molecular
analysis and all remaining F1 snails were measured (see below).

To generate the F2 generation, we pooled F1 snails from the same
treatment in an aquarium filled with control water and allowed them to
copulate for 24 h. As previously described, F1 snails were then isolated in
80 mL boxes and laid eggs for 3 days to produce F2 matrilines. F2 snails
from the two parental environments (nonexposed and exposed to
predator cues) were reared only in control water to investigate the effect
of the parental environment (TGP) alone, i.e, without the interaction
between parental and developmental environments. Our previous study
revealed that TGP is stronger in a mismatch situation (i.e,, when F2 from
exposed parents are not exposed (Luquet and Tariel 2016)). We followed
the same protocol steps as previously described for F1 snails for F2
generation, except that eight siblings per matriline were reared and
measurements were made at an older age because of slower growth. For
F1, one F2 snail per matriline and treatment was frozen for molecular
analysis, and the others were measured.

Snails were fed ad libitum with boiled and mixed lettuce. The water
(according to the treatment) and food were renewed twice a week. The
water with predator cues (i.e., exposed treatment) was the water in which
F. limosus crayfish were raised (one crayfish/5L), for 3 days and were
subsequently fed with snails. Additionally, to ensure the presence of fresh
alarm cues, we smashed several P. acuta adult snails in predator-cue water
(one snail/5 L) for 1 h before use.

Behavioural and morphological responses

In this study, to check that exposure to predator cues triggered WGP and
TGP, escape behaviour and shell morphology were measured in F1
(nonexposed snails = 76, exposed snails = 73) and F2 (snails from
nonexposed parents = 89, snails from exposed parents = 101).Some
mortality events led to uneven sample sizes, but the mortality rates
remained consistent across families (see Table S1). Crawling out of the
water (positioning themselves above the water surface) allows snails to
escape benthic predators such as crayfish (DeWitt 1998; Tariel et al. 2020a).
Shorter and narrower shell and aperture dimensions and thicker shells are
adaptive antipredator responses (Auld and Relyea 2011). These phenotypic
traits have consistently been implicated in the transgenerational responses
of P. acuta to predator cues (Beaty et al. 2016; Luquet and Tariel 2016).

Escape behaviour. One week before the measurements and four hours
after the water renewal, we recorded the position above or below the
water surface of each snail in their rearing boxes. Consequently, the
behaviour of F1 snails was recorded in water without or with predator cues
according to their respective treatments, whereas that of F2 snails was
recorded only in water without predator cues.

Shell thickness, shell length and shape. Shell thickness was directly
measured with an electronic calliper at the nearest 0.01 mm at the edge
of the aperture. A photograph of each snail (aperture upwards) was
subsequently taken with an Olympus SC50 camera installed on an
Olympus SZX9 binocular and an Olympus DF PLAPO 1X-2 objective at a 8%
magnification. Snail shell length, shell width, aperture length and aperture
width were measured using ImageJ (Schneider et al. 2012). To estimate
potential changes in shell shape according to treatment, we used
geometric methods (Gustafson et al. 2014). For each snail shell, we
digitised 19 landmarks (Fig. 1) using ImageJ software. Snails that lacked
homologous landmarks because of broken shells (typically broken
apertures and apexes) or small sizes (lack of the third shell spire) were
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Fig. 1 Locations of the different landmarks (circle symbols) and
pseudo-landmarks (positioned using a geometric method, square
symbols) on P. acuta shell. Pseudo-landmarks were created using a
geometric method: first, two tangents (T1 and T2) were drawn from
landmark 1 (apex). T1 touches the curve of the habitation spire (5)
and T2 touches the external edge of the aperture (10). From the two
points of tangency (points 5 and 10), two lines perpendicular to the
tangents were traced (P1 and P2). The intersections with the
columellar edge of the aperture, the external edge of the aperture
and the curve of the habitation spire give additional pseudo-
landmarks (6, 9, 18 and 19). The length of the shell L (straight line
passing by 1 and 8) gives pseudo-landmark 18 at the intersection
with the columellar edge of the aperture).

removed from the analyses (nonexposed F1 snails = 76, exposed F1 snails
= 72, F2 snails from nonexposed parents = 89, F2 snails from exposed
parents = 99). To compare shell shapes according to treatment, we scaled
the shapes using the size metric defined below (Eqn. 1). The rotational
components were removed by translating all shapes so that the centroids
lie at the origin. Rotational components were removed by rotating all the
shapes until the Procrustes distance was minimised, with the first shell
fixed as a reference.

19

S = Z((Xk,i —%)7 4 i — Y

i=
Equation 1: Procustes equation used to scale the shapes using the size

metric s, which is the size of the k-th shell; x,; and y,; are the x and y
components of the i-th landmark; (Xx,y,) is the centroid of the k-th shell.
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Statistical analyses

The same statistical analyses were separately performed to test for WGP on
F1 snails and TGP on F2 snails. The treatment factor (i.e., nonexposed or
exposed to predator cues) was the developmental environment for WGP
(F1), whereas it was the parental environment for TGP (F2).

Escape behaviour. The effects of predator cues on escape behaviour (i.e.,
snail position above/on or below the water surface) were analysed using
generalised linear mixed models (GLMMs) assuming a binomial distribu-
tion (logit link function). The treatment was a fixed effect, and matriline
was a random intercept effect. We tested the significance of fixed and
random effects with likelihood ratio tests.

Shell thickness and shell length. To analyse the effects of predator cues on
shell length and shell thickness, we performed linear mixed models with
treatment as a fixed effect and matriline as a random intercept. We used
restricted maximum likelihood estimation and Kenward and Roger’s
approximation for degrees of freedom. We tested the significance of fixed
effects with type Il F-tests (Kuznetsova et al. 2017) and the significance of
random effects with likelihood ratio tests.

Linear mixed models and generalised linear mixed models were
generated using the Ime4 package (Bates et al. 2014) in R software
(version R-4.4.1 for Windows, (RStudio Team 2020).

Shell shape. The effects of predator cues on shell shape were analysed
using principal component analysis (PCA) and visualised with the 2D
landmark relative warp analysis functionality. All the standardised shapes
obtained via the Procrustes method were analysed using PAST software
with a Student test (Hammer et al. 2001).

RNA Extraction and Sequencing The mantle skirt was dissected for 5
nonexposed F1 snails and 5 exposed F1 snails, and for 10 F2 snails from
nonexposed parents and 10 F2 snails from exposed parents. Total RNA
from the mantle was extracted by adding TRI Reagent (Molecular Research
Center MRC, TR118) to the samples and homogenising the tissues on ice
with pistons and an agitator (Motor Mixer Clearline ref.045011 Dutscher).
All remaining steps were carried out according to the manufacturer’s
protocols (Molecular Research Center MRC, TR118). Then, the RNA was
treated with Turbo DNase enzyme (Turbo DNA free kit, Invitrogen,
AM1907) and assayed by fluorescence using a Qubit fluorometer (Qubit®
RNA HS Assay Kits Molecular Probes, Invitrogen, Q32855). Library
construction was carried out using an NEBNext Ultra Il RNA Library Prep
Kit for lllumina (Biolabs New England, NEB E7770, E7490, E7600). Libraries
were randomly split into three groups and sequenced on three lanes with
an lllumina® HiSeq4000™ machine on the GenomEast platform hosted at
the IGBMC (GenomEast Platform — Institut de Génétique et de la Biologie
Moléculaire et Cellulaire IGBMC, llikirch, France), resulting in 50 bp long
single-end reads.

Differential gene expression analysis

FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)) was
used to assess the quality of the reads. We used a reference genome ORF
P. acuta available on NCBI (Isolate: Inbredline_101_S28. RefSeq:
GCF_028476545.12). Gene expression levels were assessed on annotated
transcripts using Kallisto (-I 50 -s 10 options; Bray et al. 2016). We
aggregated effective counts at the gene level and then applied rounding
to the nearest whole number to convert noninteger values into integer
counts. We also applied a minimum count filter of 1 (cpm) where we
removed all the genes with reads below 1 (i.e., removing 5634 genes from
the total of 46,965). The rounded effective counts were used as inputs for
differential gene expression using the DESeq2 package (Love et al. 2014),
which performs differential gene expression analysis using negative
binomial distribution and shrinkage estimation for dispersions (“apeglm”
type shrinkage, Zhu et al. 2019), and outputs expression fold changes to
improve the interpretability of the estimates. We specified nonexposed or
exposed treatment in the model (design formula: “design = ~treatment”)
within each generation independently, meaning that we compared
F1 snails from nonexposed and exposed treatments, and F2 snails from
nonexposed and exposed parents. First, the Wald test (DESeq2 package)
was used to test the significance of differentially expressed genes (DEGs) in
all samples between the nonexposure and exposure groups. Second, we
checked for any structures in the normalised count table by performing a
principal component analysis (PCA) of the 500 most DEGs from DESeq2
analysis (pval < 0.05) based on Log2FoldChange (|LFC|, i.e., the logarithm
base 2 of the fold change in gene expression between two experimental
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conditions, providing a measure of both the magnitude and direction of
differential expression). Third, we filtered the significant DEGs by an |LFC]|
greater than 1 in each generation. Consequently, only differential
expression levels with adjusted p-values<0.05 and |LFC|>1 were
considered thereafter. We subsequently investigated whether the DEGs
in F1 were also differentially expressed in F2 by comparing specific gene
IDs across the datasets from the two generations. Finally, as the quality of
annotations of the reference genome did not allow complex functional
analyses, we determined the potential gene functions and the associated
protein families of all significant DEGs using the scan procedure of InterPro,
a tool provided by the European Bioinformatics Institute from the
European Molecular Biology Laboratory (EMBL-EBI; (Blum et al. 2024;
Jones et al. 2014). InterPro integrates signatures from 13 member
databases to classify proteins into families, to predict functional domains,
and to identify key sites, enabling comprehensive functional annotation.

RESULTS

Predator-induced behaviour and shell morphology
Within-generational plasticity. In the F1 generation, the propor-
tion of crawling-out behaviour increased significantly in snails
exposed to predator cues (+85.25%, F[1,19.43]1 = 321.82, p < 0.001;
Fig. 2A). Shell length significantly decreased in snails exposed to
predator cues (—6.3%, F[1,128.71] = 15.46, p < 0.001; Fig. 2B). Shell
thickness significantly increased in exposed snails (+18.8%,
F[1,129.58] = 4.02, p = 0.047; Fig. 2C). The matriline random effect
was significant for shell length (x’[1] = 19.022, p<0.001) and
nonsignificant for behaviour and shell thickness (y’[1]= 0.690,
p = 0406 and x[1] =2.6116, p = 0.106, respectively).

Exposure to predator cues induced changes in shell shape. The
first two axes of the PCA accounted for 59.2% of the shell shape
variation (Fig. 3), and PCA axes 1-4 (74.2% cumulative shape
variation) were the only axes accounted for more than 5% of the
shape variation. PC1 showed a change in the columellar area
(close to landmarks 18-19) from shells with relatively wide
apertures (dilated columellar area; Fig. 3C) to shells with relatively
narrow apertures (compressed columellar area; Fig. 3D). PC2
changed in the slenderness of the shell from shells with relatively
short spires (compressed apex; Fig. 3B) and relatively wide
apertures (dilated aperture) to shells with relatively short spires
(dilated apex) and narrow aperture widths (compressed aperture;
Fig. 3A).

Compared to exposed snails, nonexposed snails presented the
same range of deformation in terms of the columellar area (PC2, t-
test: t=1.07, df =144, p=0.28). However, the shells of snails
exposed to predator cues were slenderer, with longer spires and
narrower aperture widths than those of nonexposed snails (PC1, t-
test: t = 4.803, df = 144, p < 0.001). This elongation was associated
with the dilatation of the last three spires and a narrow aperture at
the base of the external edge. In contrast, the shells of

nonexposed snails had a wider aperture at the base of the
external edge and smaller spires.

Transgenerational plasticity. In the F2 generation, the proportion
of crawled snails did not differ between snails from nonexposed
and those from exposed parents (F[1,20.31] = 3.929, p = 0.061; Fig.
4A). Snails from parents exposed to predator cues were
significantly longer and had thicker shells than those from
nonexposed parents (+4.9%, F[1,170.87]1=7.55, p=0.006 and
+16.9%, F[1,174.11] = 9.858, p = 0.002, respectively; Fig. 4B, C). The
matriline random effect was significant for shell length
(x’[11=31.685, p<0.001) and nonsignificant for behaviour and
shell thickness (y’[1] = 0.022, p = 0.882 and x’[1]1 = 1.882, p = 0.17,
respectively).

Parental exposure to predator cues induced changes in shell
shape. The first two axes of the PCA accounted for 63.8% of the
shell shape variation, and the cumulative percentage accounting
for PCA axes 1-4 was 80.14% (Fig. 5). PC1 displayed a change in
shell aperture width; the shells with high PC1 scores (Fig. 5C)
showed a dilatation of the shell where the outer lip meets the
parietal wall and a small compression of the columellar area (i.e., a
wider aperture). Shells with low PC1 scores (Fig. 5D) presented a
narrower aperture, a consequence of a dilated columellar area but
compression of the parietal wall and basal lip in comparison to
shells with high PC1 scores. PC2 showed a change in shell
aperture width but also in shell length, ranging from shells
(Fig. 5C) with a dilated outer lip and compression of the apex
(which tends to reduce spire length, i.e., overall shell length) to
shells (Fig. 5D) showing elongated spires from the dilated apex,
with a narrower aperture due to outer lip compression.

Snails from predator-exposed parents had a dilatation of the
shell in the columellar area accompanied by a small compres-
sion of the parietal wall (PC1: t =2.067, p =0.04). Conversely,
there was no difference in deformation of the outer lip or
dilatation or compression of the apex between snails from
exposed and nonexposed parental environments (PC2: t = 0.59,
p =0.55).

Differential gene expression induced by predator-cues

A principal component analysis (PCA) was performed to explore
the clustering of read counts on the first 500 most DEGs. The first
and second principal components (PCs 1 and 2) explained 18%
and 11% of the variance respectively (Fig. 6, PCA loadings
available in Fig. S1). The plot did not show clustering between the
nonexposed and exposed treatments or between the F1 and F2
generations (Fig. 6). In the F1 generation, differential expression
analysis revealed a total of 112 DEGs between nonexposed and
exposed snails (101 upregulated genes and 11 downregulated
gene; Fig. S2). In the F2 generation, the differential expression
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analysis revealed a total of 23 DEGs between snails from
nonexposed and exposed parents (17 upregulated and 6 down-
regulated gene; Fig. S2). A comparison of DEGs in F1 and F2
revealed that they did not overlap (Figs. 7; S3).

The DEGs in F1 were involved mainly in metabolism, signal
transduction, extracellular matrix organisation and protein and
transcriptional regulation (Fig. 8, Tables S2 and S3 for further
details). The DEGs in F2 were involved mainly in metabolism and
transcriptional regulation, including DNA methylation regulation
(Fig. 8, Tables S2 and S3 for further details). In both F1 and F2,
some DEGs were associated with calcium signalling (Fig. 8, Tables
S2 and S3 for further details), and the majority of DEGs were genes
with unknown functions.

Heredity (2025) 134:439 - 449

DISCUSSION

This work aimed to elucidate the molecular mechanisms under-
lying the expression of within- and trans-generational plasticity of
antipredator defences in P. acuta. We expected that gene
expression would be affected by developmental (WGP) and
parental (TGP) exposure to predator cues and that WGP and TGP
would share the same core set of genes. Exposure to predator
cues resulted in changes in escape behaviour, shell growth, shell
thickness and shell shape. The parental exposure to predator cues
(TGP) also influenced the offspring phenotype, particularly
morphological traits as previously shown in this system (e.g.
Luquet and Tariel 2016). Accordingly, DEGs were detected
between nonexposed and exposed snails in F1 (WGP) and
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between F2 snails according to parental exposure to predator
cues (TGP). However, the number of DEGs detected for TGP was
lower than that detected for WGP. Finally, our results revealed that
DEGs associated with WGP and TGP did not overlap.

Phenotypic changes and gene expression induced by within-
generational exposure to predator cues

As expected, snails exposed to predator cues crawled more out of
the water, had thicker shells, were smaller and developed
slenderer shells with longer spires and narrower aperture widths
than nonexposed snails did. These behavioural and morphological
responses represent defences and are supposed to be adaptive as
they are consistent with escape behaviour (Tariel et al. 2020) and

F2

El

Fig. 7 Overlap of differentially expressed genes between F1 and
F2 generations. Venn diagram (generated on Rstudio using the
DESeq2 package) illustrating the number and overlap of differen-
tially expressed genes between the F1 and F2 groups. Genes specific
to each group are shown in individual circles; the intersection
represents the shared genes.

A-F1

lon Transport

lon binding

Extracellular matrix organisation H
DNA repair

Development regulation | |
Development | |

Cell growth regulation

Cell adhesion

Apoptosis regulation
Microtubule Motor activity
Intracellular Transport
Immune/Defense response
Cell division regulation
Calcium signaling

Protein binding
Transmembrane Transport | [l
Extracellular matrix organization
Transcription Regulation
Signal transduction
Metabolism

Unknown

Class of functions

0 20 40 60
Proportion (%)

L. Dejeux et al.

an increase in shell crush resistance (Tariel et al. 2020a, 2020c),
increasing snail survival in the face of crayfish predation (Auld and
Relyea 2011). The decreased shell size observed in exposed snails
may result from physiological stress caused by exposure to
predator cues, including costs to produce antipredator defences
(e.g. crawling-out behaviour occurs at the expense of foraging;
DeWitt 1998).

These predator-induced WGP changes were associated with a
distinct pattern of gene expression with 112 DEGs (101
upregulated and 11 downregulated genes). Overall, this pattern
is consistent with several studies that explored the changes in
gene expression induced by the environment (e.g. Aubin-Horth
and Renn 2009; Herman and Sultan 2011). In the context of
predator—prey interactions, the main knowledge about the
transcriptomic responses of prey to predators comes from studies
on Daphnia species. For example, Hales et al. (2017) in Daphnia
ambigua and Rozenberg et al. (2015) in Daphnia pulex reported
that antipredator defences, mainly those related to morphological
traits, were associated with 48 and 230 DEGs respectively. In
contrast, no DEGs were identified in Daphnia galeata, a species
known to adjust life history traits (such as reproduction) but not
morphological traits in response to predator cues. Similarly, Orsini
et al. (2018) revealed no changes in gene expression associated
with short-term exposure to fish kairomones in Daphnia magna.
These contrasting results suggest that the patterns of gene
expression may depend on several factors such as the traits
considered and the strength of predator signals (e.g. cue
concentration and duration of exposure).

The functional analysis of DEGs in snails exposed to predator
cues suggested that these genes are linked mainly to metabolic
functions and transcription regulation, both of which are closely
associated with stress responses. Notably, 26% of the DEGs had
unknown functions. A substantial portion of these genes are
involved in generic metabolic processes (e.g. complex |
intermediate-associated protein 30, which plays a role in
respiratory metabolism; Walker et al. 1992). These functions are
essential for maintaining cellular stability and enabling adaptation
to fluctuating environmental conditions. However, some genes are
implicated in more stress-specific responses that may be directly
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Fig. 8 Proportions of classes of functions of DEGs in both generations. Barplot showing the proportion of the differentially expressed genes
in F1 (A) and F2 (B) associated with each class of function, based on annotations from the InterPro EMBL-EBI database (Jones et al. 2014; Blum

et al. 2024).
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triggered by predator exposure (e.g. involvement in the TOR
protein complex, which is well known to influence the response to
abiotic stressors; Blackwell et al. 2019; Katewa and Kapahi 2011).
Similarly, some DEGs were linked to calcium ion metabolism (e.g.
by coding for the annexin and peptidase C2 protein families;
Khorchid and lkura 2002) and could be involved in shell synthesis.
Calcium is the main component of shell gastropods (Bukowski and
Auld 2014), and modulations of general calcium pathways could
influence the expression of antipredator defences, such as
increases in shell thickness and changes in shell shape, as
observed in our study. Our findings align with previous research
investigating the functions of DEGs in predator cue environments
and showing that genes are associated with defensive structures,
metabolism and transcription regulation. Indeed, Hales et al.
(2017) and Rozenberg et al. (2015) reported that the gene
functions of D. ambigua and D. pulex mostly explained the
observed defensive phenotypic changes (e.g. the expression of
proteins involved in the formation of protective structures and in
cuticle strengthening), as well as the metabolic pathways involved
in resource allocation and stress responses. Similar results have
been reported in larvae of the damselfly Enallagma cyathigerum
and in the marine copepod Calanus finmarchicus, where predation
risk activated genes encoding for stress proteins, reduced
antioxidant defence, and altered lipid metabolism (Skottene
et al. 2020; Slos and Stoks 2008). Although the relationship
between the functions of DEGs and phenotypic traits is highly
speculative in nonmodel organisms, our study may highlight some
interesting molecular pathways underlying predator-induced WGP
in P. acuta that would be interesting to study in further detail.

Phenotypic changes and gene expression induced by
transgenerational exposure to predator cues

Our results confirmed predator-induced TGP. The parental
exposure to predator cues significantly influenced the offspring
phenotype, particularly the morphological traits. F2 snails from
exposed parents had thicker and longer shells with narrower
apertures than snails from nonexposed parents while they had
similar antipredator behaviour. These transgenerational effects
are consistent with previous studies on this system which
demonstrated that parental environments shape the antipreda-
tor traits of offspring (Beaty et al. 2016; Tariel et al. 2020c). A
thicker shell and a larger size increase the shell-crush resistance,
and a narrower aperture limits body snail extirpation by crayfish
(Auld and Relyea 2011; DeWitt 1998). The longer shell of F2 snails
from exposed parents was opposed to the shorter shell of
exposed snails in F1. This contrasting pattern aligns with our
previous study (Tariel et al. 2020c¢), suggesting that offspring of
exposed parents, having received information about predation
risk at an early developmental stage, activate pathways that
enable simultaneous investment in shell length to reach refuge
size (Auld and Houser 2015) and shell thickness for increased
crush-resistance (Beaty et al. 2016; Tariel-Adam et al. 2023). The
antipredator behaviour was similar between snails from non-
exposed and exposed parents, which is in line with some
contrasting results reported in other studies (Tariel et al.
2020a, 2020c). Overall, the expression of antipredator traits by
offspring from exposed parents, even if they are not themselves
exposed to predator cues, may allow them to anticipate future
predation risk and increase their survival (MacLeod et al. 2022;
Tariel et al. 2020b).

At the molecular level, predator-induced TGP was associated
with 23 DEGs (17 upregulated and 6 downregulated) according to
the parental environment. The low number of DEGs in the F2
generation contrasts with studies on factors other than predation
(e.g. pH in Clark et al. 2019; temperature in Ledén-Rettig 2023) and
with parental exposure to predator cues (Hales et al. 2017;
Mommer and Bell 2014; Stein et al. 2018). For example, Stein et al.
(2018) found 322 DEGs in three-spined stickleback G. aculeatus
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offspring when predation risk was experienced by the father. In D.
ambigua, individuals from predator-exposed parents and grand-
parents presented 233 and 170 DEGs, respectively, compared with
individuals from nonexposed parents (Hales et al. 2017). Although
this contrast may result from a less stringent method of DEG
selection (no LFC filtering, e.g. Stein et al. 2018), it also raises the
question of whether our experiment captured the entire
transgenerational transcriptomic response.

First, gene expression has been investigated in only one tissue
(i.e., the mantle skirt that synthesises the shell) in this study,
whereas in many studies it has been studied in whole organs (e.g.
Stein et al. 2018) or whole individuals (e.g. Hales et al. 2017). This
may drastically decrease the number of DEGs detected, capturing
only a specific part of the gene expression changes caused by
parental environments. However, this tissue-specific approach is
particularly relevant in systems such as ours as it allows the
specific study of gene expression in the tissue at the origin of
phenotypic traits (i.e., shell modifications in this study).

Second, this study investigated only the gene expression in
offspring that were not themselves exposed to predator cues,
which did not allow us to determine whether the gene expression
associated with parental environments is modulated by develop-
mental cues. In P. acuta, there is evidence that parental and
developmental environments interact to shape the offspring
phenotype: the resulting phenotypic patterns showed much
stronger TGP in offspring that had not experienced predator cues
themselves (WGP masking TGP for most traits; (Luquet and Tariel
2016)). Although it would be relevant to provide an integrative
view of gene expression patterns in all environmental scenarios,
our study of DEGs associated with TGP focused on the
environmental situation where TGP is the strongest.

Third, the lower number of DEGs in F2 could also result from a
time lag between changes in gene expression and antipredator
defence induction (Gilbert 2001). Indeed, the environmental
conditions experienced in early life can have important con-
sequences for phenotypes later in life (Gilbert 2001; Lee et al.
2013) as well as for offspring phenotypes (Burton and Metcalfe
2014; Tariel-Adam et al. 2023; Yin et al. 2019). For example,
maternal provisioning plays a crucial role in transmitting environ-
mental information to offspring by influencing cytoplasmic
components, including mRNAs and proteins, during early
embryogenesis (Burton and Metcalfe 2014). This process can
impact gene regulation during the maternal-to-zygotic transition,
potentially shaping phenotypic responses before they are
detectable in adults. In this study, both differential gene
expression and antipredator defences in offspring were investi-
gated at the adult stage, and offspring may have integrated the
environmental information from their parents early in develop-
ment engaging them in specific predation risk developmental
trajectories. Consequently, the antipredator defence observed in
offspring from exposed parents may result from gene expression
changes early in development that no longer exist at the adult
stage, which could also explain why we did not find a clear
common core set of genes between WGP and TGP. For example,
Mommer and Bell (2014) showed that maternal experience with
predation risk influences genome-wide embryonic expression in
G. aculeatus, an early expression that may have phenotypic
consequences later (Sharda et al. 2021). This complex interplay
among the timing of environmental cue perception, gene
expression and phenotypic consequences deserves to be explored
in more detail, for example by tracking DEGs throughout
development.

The functional analysis of DEGs between snails from nonex-
posed parents and those from exposed parents suggested the
same main functions as WGP, i.e.,, metabolism and transcription
regulation. Genes associated with metabolism are mainly involved
in the response to oxidative stress and carbohydrate metabolism.
One gene might be involved in the regulation of the cytosolic
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calcium ion concentration, which might influence the shell
synthesis as previously mentioned for WGP. Most genes linked
with transcription regulation in F2 are involved in methyltransfer-
ase activity, suggesting that DNA methylation, a well-known
bearer of epigenetic information, may be involved in predator-
induced TGP (Fallet et al. 2020). Epigenetic mechanisms, such as
DNA methylation and histone modifications, are known to
contribute to the transgenerational inheritance of phenotypic
traits (Duncan et al. 2014; Fallet et al. 2020 for a review on
molluscs). Recent studies on the freshwater gastropod Potamo-
pyrgus antipodarum have demonstrated that differential DNA
methylation patterns are associated with heritable morphological
differentiations among genetically uniform populations (Smithson
et al. 2020; Thorson et al. 2017, 2019). These results suggest that
the transgenerational inheritance of antipredator traits in P. acuta
may be mediated by bearers of epigenetic information and call for
more investigations of epigenetic inheritance in the context of
predator-induced plasticity.

Comparison of differentially expressed genes associated with
WGP and TGP

The number of DEGs associated with TGP was lower than that
associated with WGP. As mentioned above, this may have
occurred because we only investigated DEGs at the adult stage
or because F2 snails did not experience direct exposure to
predator cues. Surprisingly, the DEGs associated with WGP and
TGP did not overlap, suggesting that predator-induced TGP and
WGP do not share common genes. This finding is consistent with
Hales et al. (2017), who reported that the DEGs for predator-
induced WGP and TGP in D. ambigua were largely distinct. In
contrast, Stein et al. (2018) reported that there were unique sets of
genes related to the different forms of plasticity but also identified
a common core set of genes in G. aculeatus. Despite the absence
of common genes in our study, the DEGs in F2 seemed to be
involved in the same main functions as those in F1, ie,
metabolism and transcriptional regulation. Consequently, these
results suggest that common functions are used for predator-
induced WGP and TGP via different genomic pathways. This
finding has important implications for the evolution of predator-
induced plasticity as it suggests that WGP and TGP can evolve
independently.

CONCLUSION

This study confirmed predator-induced WGP and TGP in P. acuta,
showing that antipredator traits (escape behaviour, shell thick-
ness, shell length and shell shape) were induced when snails
were exposed during their own development or when they
originated from parents exposed to predator cues (but not
exposed themselves). These within- and transgenerational
phenotypic responses were both associated with differential
patterns of gene expression. However, the transcriptomic signal
was lower for TGP (a lower number of DEGs), and surprisingly no
common genes were shared between WGP and TGP, although
the main functions were similar (metabolism and transcription
regulation). Expression analysis revealed that only a small set of
genes (112 in F1 and 23 in F2) exhibited strong differential
expression responses consistently in both generations. Several
hypotheses have been proposed to explain these distinct
transcriptomic patterns between predator-induced within-gen-
erational and transgenerational plasticity. Further research is
needed to overcome the limitations of this study by examining
transcriptomic signals throughout development, across multiple
tissues, and under diverse environmental conditions. This study
provides a more integrative view of the underlying molecular
mechanisms of WGP and TGP, addressing an important gap in
knowledge concerning important processes for adaptation to
changing environments.
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